3.11.68 \(\int \frac {\sqrt {1+x}}{\sqrt {1-x}} \, dx\) [1068]

Optimal. Leaf size=21 \[ -\sqrt {1-x} \sqrt {1+x}+\sin ^{-1}(x) \]

[Out]

arcsin(x)-(1-x)^(1/2)*(1+x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {52, 41, 222} \begin {gather*} \text {ArcSin}(x)-\sqrt {1-x} \sqrt {x+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 + x]/Sqrt[1 - x],x]

[Out]

-(Sqrt[1 - x]*Sqrt[1 + x]) + ArcSin[x]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int \frac {\sqrt {1+x}}{\sqrt {1-x}} \, dx &=-\sqrt {1-x} \sqrt {1+x}+\int \frac {1}{\sqrt {1-x} \sqrt {1+x}} \, dx\\ &=-\sqrt {1-x} \sqrt {1+x}+\int \frac {1}{\sqrt {1-x^2}} \, dx\\ &=-\sqrt {1-x} \sqrt {1+x}+\sin ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 34, normalized size = 1.62 \begin {gather*} -\sqrt {1-x^2}+2 \tan ^{-1}\left (\frac {\sqrt {1+x}}{\sqrt {1-x}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 + x]/Sqrt[1 - x],x]

[Out]

-Sqrt[1 - x^2] + 2*ArcTan[Sqrt[1 + x]/Sqrt[1 - x]]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(41\) vs. \(2(17)=34\).
time = 0.17, size = 42, normalized size = 2.00

method result size
default \(-\sqrt {1-x}\, \sqrt {1+x}+\frac {\sqrt {\left (1+x \right ) \left (1-x \right )}\, \arcsin \left (x \right )}{\sqrt {1+x}\, \sqrt {1-x}}\) \(42\)
risch \(\frac {\sqrt {1+x}\, \left (-1+x \right ) \sqrt {\left (1+x \right ) \left (1-x \right )}}{\sqrt {-\left (1+x \right ) \left (-1+x \right )}\, \sqrt {1-x}}+\frac {\sqrt {\left (1+x \right ) \left (1-x \right )}\, \arcsin \left (x \right )}{\sqrt {1+x}\, \sqrt {1-x}}\) \(65\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(1/2)/(1-x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(1-x)^(1/2)*(1+x)^(1/2)+((1+x)*(1-x))^(1/2)/(1+x)^(1/2)/(1-x)^(1/2)*arcsin(x)

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 14, normalized size = 0.67 \begin {gather*} -\sqrt {-x^{2} + 1} + \arcsin \left (x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(1-x)^(1/2),x, algorithm="maxima")

[Out]

-sqrt(-x^2 + 1) + arcsin(x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 37 vs. \(2 (17) = 34\).
time = 0.56, size = 37, normalized size = 1.76 \begin {gather*} -\sqrt {x + 1} \sqrt {-x + 1} - 2 \, \arctan \left (\frac {\sqrt {x + 1} \sqrt {-x + 1} - 1}{x}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(1-x)^(1/2),x, algorithm="fricas")

[Out]

-sqrt(x + 1)*sqrt(-x + 1) - 2*arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.93, size = 99, normalized size = 4.71 \begin {gather*} \begin {cases} - 2 i \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} - \frac {i \left (x + 1\right )^{\frac {3}{2}}}{\sqrt {x - 1}} + \frac {2 i \sqrt {x + 1}}{\sqrt {x - 1}} & \text {for}\: \left |{x + 1}\right | > 2 \\2 \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {x + 1}}{2} \right )} + \frac {\left (x + 1\right )^{\frac {3}{2}}}{\sqrt {1 - x}} - \frac {2 \sqrt {x + 1}}{\sqrt {1 - x}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(1/2)/(1-x)**(1/2),x)

[Out]

Piecewise((-2*I*acosh(sqrt(2)*sqrt(x + 1)/2) - I*(x + 1)**(3/2)/sqrt(x - 1) + 2*I*sqrt(x + 1)/sqrt(x - 1), Abs
(x + 1) > 2), (2*asin(sqrt(2)*sqrt(x + 1)/2) + (x + 1)**(3/2)/sqrt(1 - x) - 2*sqrt(x + 1)/sqrt(1 - x), True))

________________________________________________________________________________________

Giac [A]
time = 1.29, size = 28, normalized size = 1.33 \begin {gather*} -\sqrt {x + 1} \sqrt {-x + 1} + 2 \, \arcsin \left (\frac {1}{2} \, \sqrt {2} \sqrt {x + 1}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(1/2)/(1-x)^(1/2),x, algorithm="giac")

[Out]

-sqrt(x + 1)*sqrt(-x + 1) + 2*arcsin(1/2*sqrt(2)*sqrt(x + 1))

________________________________________________________________________________________

Mupad [B]
time = 0.14, size = 14, normalized size = 0.67 \begin {gather*} \mathrm {asin}\left (x\right )-\sqrt {1-x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + 1)^(1/2)/(1 - x)^(1/2),x)

[Out]

asin(x) - (1 - x^2)^(1/2)

________________________________________________________________________________________